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Abstract

A model for a porous or particulate bed electrode reactor is presented. The model consists of nonlinear second-order ordinary differ-
ential equations, a one-dimensional Poisson equation, describing the effect of the electric field on this system, and a one-dimensional
diffusion-reaction equation describing the concentration variation associated with diffusion. The model accounts for mass transport and
heterogeneous electrochemical reaction. The solution of this model is by the approximate Adomian polynomial method and is used to
determine lateral distributions of concentration, overpotential and current density, overall cell polarisation and effectiveness factors, and
to simulate the effects of important system and operating parameters, i.e. local diffusion rates and mass transport coefficients.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There have been several treatments and models of
three-dimensional, porous or particulate bed reactors devel-
oped over the years[1–8]. Three-dimensional electrodes are
generally considered for reactions with low operating cur-
rent densities in order to increase overall current per unit cell
volume. Three-dimensional electrode structures are used in
several applications, where high current densities are re-
quired at relatively low electrode and cell polarisation, e.g.
water electrolysis and fuel cells. There have been several
models of the current distribution in porous fuel cell elec-
trodes particularly polymer electrolyte fuel cells which have
employed phenomenological transport equations[9–15].

In general applications of porous electrodes it is advanta-
geous that all of the available electrode area is fully utilised
when supporting high current densities at low polarisa-
tion. However conductivity limitations of three-dimensional
electrodes generally cause current and overpotential to be
non-uniform in the structure. In addition the reaction rate
distribution may also be non-uniform due to the influence of
diffusion and convective mass transfer[2]. The maximum
current density at any position in the electrode structure will
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be limited by the prevailing conditions of mass transfer, i.e.
a limiting current can arise that can effect on the electrode
performance and particularly the potential distribution.

The models of mass transfer reaction in porous electrodes,
which describe the potential distribution or concentration
distribution, are nonlinear differential equation(s), that are
usually solved by linearisation and numerical methods. In
this paper we describe a model of the porous electrode in
which internal mass transport limitations arise and are de-
scribed by a simple mass transport coefficient. This paper
is based on a previous nonlinear analysis of a packed bed
electrode model in which the bulk electrolyte reactant con-
centration was assumed constant, i.e. low reactant concen-
tration[5]. In this paper we extend the model to the situation
where there is a simultaneous variation in concentration as
well as potential in the porous electrode.

In trying to interpret the non-uniformity of reaction rate
and the utilisation of the electrode area a convenient and
simple concept of effectiveness,E, can be used[2]. This
allows the predicted maximum current density to be cor-
rected to give the actual rate. The model solution is obtained
using the Adomian’s “inverse operator method” (IOM) or
“decomposition method”[16]. This is an active field in
nonlinear science that is particularly useful in studying non-
linear problems and can solve strong nonlinear differential
equations without hypotheses such as linearity, perturbation,
etc.[16–18]. In an earlier paper[2] we described the use of
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Nomenclature

a specific area of packed bed
electrode (m−1)

Am finite term approximate of Adomian
polynomials

An Adomian polynomials
cO concentration of oxidised species in

bulk (mol m−3)
cOs surface concentration of oxidised species

(mol m−3)
cR concentration of reduced species in bulk

(mol m−3)
cRs surface concentration of reduced species

(mol m−3)
c0

O reference concentration of oxidised
species in bulk (mol m−3)

c0
R reference concentration of reduced species

in bulk (mol m−3)
C dimensionless concentration= cRs/cR
Cm components of finite term approximate of

dimensionlessC
Cs dimensionless surface concentration
Di diffusivity of speciesi (m2 s−1)
E Effectiveness (dimensionless)
F Faraday constant (C mol−1)
�i current density (A m−2)
ic cathodic current density (A m−2)
iin intrinsic current density (A m−2)
il limiting current density (A m−2)
iT total current density (A m−2)
i0 exchange current density (A m−2)
I dimensionless current density= iT/ai0L
Iloc local dimensionless current density
In approximate of dimensionless current

density
L bed length in the direction of current

flow (m)
L−1 inverse operator
n number of electrons involved in

reaction
Ni flux of speciesi (mol m−2 s−1)
R universal gas constant (J mol−1 K−1)
s dimensionless parameter= ai0L2/nFDcR
T temperature (K)
x distance in the direction of current

flow (m)
X dimensionless distance in the direction of

current flow= x/L

Greek letters
α dimensionless parameter= αaφ1
αa anodic charger transfer coefficient

(dimensionless)

αc catholic charger transfer coefficient
(dimensionless)

β nF/RT (V−1)
γ = il/i0 a dimensionless current density ratio
η overpotential= φ1 − φ2 − φ0 (V)
Θn approximate ofn terms for dimensionless

variableΦ
κ effective conductivity of electrolyte phase

(�−1 m−1)
µ dimensionless parameter= −ν2/φ1

ν2 dimensionless parameter= ai0L2β/κ

φ dimensionless potential= βη

φm components of finite term approximate of
dimensionless potential

φn components of approximate of
dimensionless potential

φ0 dimensionless unknown constant
φ1 dimensionless potential at membrane

(X = 1)
φ0 potential of open circuit (V)
φ1 potential in conductive solid phase (V)
φ2 potential in solution phase (V)
Φ dimensionless potential variable= φ/φ1
Φm components of finite term approximate of

dimensionlessΦ
Ωn approximate ofn terms for dimensionless

variableC

an approximate Adomian method to solve the problem of a
packed bed reactor. In this paper the method described is an
improved Adomian decomposition which provides greater
accuracy in solution.

2. Porous electrode analysis

The three-dimensional or packed bed electrode has a
thicknessL, bounded on one side by a current feeder (x =
0) and on the other side by a membrane or free solution
(x = L) as shown inFig. 1. Both electrolyte and electrode
phases are assumed to be continuous media with uniform
effective conductivities and in which the electrical poten-
tial obeys Ohm’s law. Mass transport of reactant, in the
porous electrode, is dominated by dispersion or diffusion,
with negligible convective flow of fluid. Locally within the
electrode there is a mass transport resistance between the
electrode surface and the solution. This situation may, for
example, arise when the surface of the electrode is cov-
ered by a thin layer of polymer electrolyte or in a fuel
cell electrode in which the electrocatalyst is covered by a
thin water layer. Thus within the porous structure there is
a mass transport limitation between the bulk concentration
in the pores and that at the surface of the catalyst particles
in the porous electrode matrix. That is the kinetics of the
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Fig. 1. Schematic diagram of porous electrode system.

electrochemical reaction are influenced by an internal mass
transport resistance.

Additional assumptions adopted in this analysis are:

1. Isothermal and steady state conditions apply.
2. Ionic migration of the reacting species is neglected.
3. The electrode is characterised by a uniform specific area,

a.
4. The mass transfer conditions between the fluid phase and

fixed phase are also assumed to be uniform as defined by
a single mass transport coefficient.

The model of the electrode is developed as follows[1]:
According to Ohm’s law

�i = −κ∇φ2 (1)

where�i is the vector of local current density.∇φ2 is the
gradient of potential of electrolyte andκ is the effec-
tive conductivity of the electrolyte. The divergence of�i
is

∇ · �i = −κ∇ · ∇φ2 = −κ∇2φ2 (2)

and

∇ · �i = ai0

[
cRs

c0
R

exp

(
αanFη

RT

)
− cOs

c0
O

exp

(
−αcnFη

RT

)]

(3)

where ∇·i is the transfer current per unit volume of the
electrode and has the direction of an anodic current, andη

is the local overpotential,η = φ1 − φ2 − φ0.
φ1, the potential of electrode phase, is considered as a

constant.φ0, the open-circuit value ofφ1 − φ2 when the
concentrations of the reduced and oxidised species are the
initial c0

R andc0
O, can be assumed to be zero[4].

Then the model for potential distribution in one dimension
can be written as

d2η

dx2
= ai0

κ

[
cRs

c0
R

exp

(
αanFη

RT

)
− cOs

c0
O

exp

(
−αcnFη

RT

)]

(4)

wherecR andcO are concentrations of reduced and oxidised
species (mol m−3) and subscript ‘s’ refers to surface concen-
trations and subscript ‘O’ the bulk reference concentrations.

For an anodic current only,Eq. (4) can be written with
dimensionless variables as

d2φ

dX2
= ν2Cs exp(αaφ) (5)

where

φ = βη, β = nF

RT
, X = x

L
,

ν2 = ai0L2β

κ
, Cs = cRs

c0
R

Assuming that diffusion in the porous electrode can be de-
scribed by Fick’s law, we have

�Ni = −Di∇ci (6)

where �Ni is the vector of local flux of reactanti, ∇ci is the
gradient of concentration of reactanti andDi is the diffusion
coefficient ofi.

For the mass transfer only in the form of diffusion, the
divergence of�Ni should be

∇ · �Ni = −Di∇ · ∇ci = −Di∇2ci (7)

and a material balance for the key component in a volume
element[1,4]

∇ · �N
= R = ai0

nF

[
cRs

c0
R

exp

(
αanFη

RT

)
− cOs

c0
O

exp

(
−αcnFη

RT

)]

(8)

whereR is the reaction term.
The concentration distribution in one dimension can be

written as

d2cR

dx2
= ai0

nFDR

[
cRs

c0
R

exp

(
αanFη

RT

)]
(9)

d2cO

dx2
= −ai0

nFDO

[
cOs

c0
O

exp

(
αcnFη

RT

)]
(10)

For an anodic current, theEq. (9) can be written with di-
mensionless variables as

d2C

dX2
= sCs exp(αaφ) (11)

where

C = cR

c0
R

, s = ai0L2

nFDRc
0
R

Introducing the mass transfer parameter, for a Tafel-type
reaction, assuming migration is negligible, the local flux will
be

Nloc = kavg(cR − cRs) = ia

nF
= i0

cRs

c0
R

exp(αaφ) (12)
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where kavg is the average mass transfer coefficient in the
electrode.

Then we can obtain

Cs = C

(i0/nFkavgc
0
R)exp(αaφ) + 1

(13)

Thus the current density becomes

ia = C

(1/i0 exp(αaφ)) + (1/il)
(14)

where the limiting current densityil = nFkavgc
0
R.

SubstitutingEq. (13) or (14)into Eqs. (5) and (11), the
model equation can be rewritten as

d2φ

dX2
= ν2 C

(1/exp(αaφ)) + (1/γ)
(15)

d2C

dX2
= s

C

(1/exp(αaφ)) + (1/γ)
(16)

whereγ = il/i0.
For convenience, letΦ = φ/φ1, µ = ν2/φ1 and α =

αaφ1. Hence a set of ordinary different equations with
boundary conditions, which describes the potential and
concentration distributions, can be obtained as

d2Φ

dX2
= µ

C

(1/exp(αΦ)) + (1/γ)
(17)

d2C

dX2
= s

C

(1/exp(αΦ)) + (1/γ)
(18)

X = 0,
dΦ

dX
= 0,

dC

dX
= 0 (19)

X = 1, Φ = 1, C = 1 or
dΦ

dX
= µI,

dC

dX
= sI (20)

The dimensionless total current density,I = iT/ai0L, where
iT is the total current density based on the cross-sectional
area of the electrode.

The measurable or total current density,iT, based on the
cross-sectional area of the electrode is given by

iT = κ

(
dη

dx

)
x=L

(21)

or

iT = nFD

(
dc

dx

)
x=L

(22)

and

iT = ai0LI = ai0L

µ

(
dΦ

dX

)
X=1

= φ1κ

Lβ

(
dΦ

dX

)
X=1

(23)

or

iT = ai0LI = ai0L

s

(
dC

dX

)
X=1

= nFDc0
R

L

(
dC

dX

)
X=1

(24)

where the dimensionless total current density,I = iT/ai0L.

To assist in the solution of these difference equations
we can obtain a relationship betweenΦ and C combining
Eqs. (17) and (18)to give

d2Φ

dX2
= µ

s

d2C

dX2
(25)

which on integration results in

Φ − 1 = µ

s
(C − 1) (26)

Hence the potential and concentration drops across the elec-
trode structure are related by the four parametersα, γ, µ
ands.

CombiningEqs. (17), (18) and (26)gives two independent
different equations:

d2Φ

dX2
= µ

[1 + (s/µ)(Φ − 1)]

(1/exp(αΦ)) + (1/γ)
(27)

X = 0,
dΦ

dX
= 0

X = 1, Φ = 1 or
dΦ

dX
= µI

and

d2C

dX2
= s

C

(1/exp{α[1 + (µ/s)(C − 1)]}) + (1/γ)
(28)

X = 0,
dC

dX
= 0

X = 1, C = 1 or
dC

dX
= sI

The effectiveness factorE is given by

E = I

exp(αaφ1)
= (dΦ/dX)X=1

µexp(α)
(29)

or

E = I

exp(αaφ1)
= (dC/dX)X=1

µexp(α)
(30)

3. Solution by Adomian’s decomposition method

Wazwaz recently reviewed the Adomian decomposition
method[19]. For a differential equation, Adomian’s decom-
position method suggests that the solutionu(x) be decom-
posed by an infinite series of components

u(x) =
∞∑
n=0

un(x) (31)

and the nonlinear functionf(x, u(x)) by an infinite series of
polynomials

f(x, u(x)) =
∞∑
n=0

An (32)
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whereAn are the so-called Adomain polynomials that can
be generated for all types of nonlinearity according to algo-
rithms set by Adomian[16].

In an operator form,Eqs. (27) and (28)can be written as

LΦ = µf1(s,X,Φ(X)) (33)

LC = sf2(µ,X,C(X)) (34)

where L = d2/dX2, and the inverse operator L−1 is a
two-fold integral operator given by

L−1(·) =
∫ 1

0

(∫ 1

0
(·)dX

)
dX (35)

Applying L−1 to both sides ofEq. (10)yields

Φ(X) = µL−1(f(X,Φ(X)) (36)

C(X) = sL−1(f(X,C(X)) (37)

The decomposition series forΦ(X) andC(X) can be given
as

∞∑
n=0

Φn(X) = µL−1

( ∞∑
n=0

An

)
(38)

∞∑
n=0

Cn(X) = sL−1

( ∞∑
n=0

An

)
(39)

where the Adomian polynomialsAn are not the same in
Eqs. (38) and (39).

For example, the first few Adomian polynomialsAn

for the equation of potential distribution are defined[3–5]
by

A0 = f(Φ0) = 1 + (s/µ)(Φ0 − 1)

(1/exp(αΦ)) + (1/γ)

A1 = f (1)(Φ0)Φ1

A2 = f (1)(Φ0)Φ2 + 1
2f

(2)(Φ0)Φ
2
1

A3 = f (1)(Φ0)Φ3 + f (2)(Φ0)Φ1Φ2 + 1

3!
f (3)(Φ0)Φ

3
1

...

An

...

(40)

The derivatives of thenth degree for the nonlinear term can
be calculated as follows:

Letu = 1 + s

µ
(Φ − 1) and v = 1

(1/exp(αΦ0)) + (1/γ)

The first derivative ofu will be

u(1) = s

µ
(41)

Thenth degree derivative ofν will be

νn(Φ0) = n![−αexp(αΦ0)
n]

[exp(−αΦ0) + (1/γ)]n+1
(42)

Hence the derivative of thenth degree for the nonlinear term
will be

f (1)(Φ0) = uv(1) + s

µ
v

f (2)(Φ0) = uv(2) + 2
s

µ
v(1)

f (3)(Φ0) = uv(3) + 3
s

µ
v(2)

f (4)(Φ0) = uv(4) + 4
s

µ
v(3)

...

f (n)(Φ0) = uv(n) + n
s

µ
v(n−1)

...

(43)

According toEq. (38), the components of solution can be
written as

Φ(X) =
∞∑
n=0

Φn(X) (44)

in which

Φ0 = unknown constant

Φ1 = µL−1(A0) = µf(Φ0)
X2

2!

Φ2 = µL−1(A1) = µ[f ′(Φ0)Φ1]
X2

3 × 4

Φ3 = µL−1(A2) = µ[f ′(Φ0)Φ2 + 1
2f

′′(Φ0)Φ
2
1]

X2

5 × 6

Φ4 = µL−1(A3) = µ

[
f ′(Φ0)Φ3 + f ′′(Φ0)Φ1Φ2 + 1

3!
f ′′′(Φ0)Φ

3
1

]
X2

7×8
.
.
.

Φn

.

.

.

(45)

For easier calculation, we suggest rearranging the solution
into an even power series form

Φ(X) = µ

(
b0 +

∞∑
n=1

bn
X2n

(2n)!

)
(46)
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where the constant coefficients will be

b0 = Φ0

µ

b1 = f(Φ0)

b2 = f (1)(Φ0)b1

b3 = f (1)(Φ0)b2 + 3f (2)(Φ0)b
2
1

b4 = f (1)(Φ0)b3 + 15f (2)(Φ0)b1b2 + 15f (3)(Φ0)b
3
1

...

(47)

The derivative of the solution can be obtained directly

dΦ(X)

dX
= µ

∞∑
n=1

bn
X2n−1

(2n − 1)!
(48)

The solution and its derivative are in series form, in which
the constantφ0, the value of the potential atX = 0, is
undetermined, as yet.

Then-term approximates are

Θn =
n∑

m=0

Φm (49)

dΘn

dX
=

n∑
m=0

(
dΦm

dX

)
(50)

or

Ωn =
n∑

m=0

Cm (51)

dΩn

dX
=

n∑
m=0

(
dCm

dX

)
(52)

and serve as the approximate solution and its derivatives,
and should satisfy the boundary conditions.

To determine the unknown constantΦ0, we impose the
boundary conditionΦ = 1 orC = 1 atX = 1, or dΦ/dX =
µI or dC/dX = sI at X = 1 on the approximants. This
will lead to an algebraic equation for each approximation
with different terms. Having determined the constantφ0, the
solution in a series form follows immediately.

Consequently, the local and total dimensionless currents
Il andI, respectively, and the effectiveness factor,E, can be
calculated according toEqs. (20), (29) and (30):

Il,n = 1

µ

(
dΘn

dX

)
= 1

s

(
dΩn

dx

)
(53)

In = 1

µ

(
dΘn

dX

)
X=1

= 1

s

(
dΩn

dX

)
X=1

(54)

En = In

exp(αaφ1)
= (dΘn/dX)X=1

µexp(αaφ1)
= (dΩn/dX)X=1

s exp(αaφ1)

(55)

4. Discussion

The following describes the results of the model and the
influence of the dimensionless parameters on potential and
current distribution and effectiveness factors. All data were
calculated by the decomposition method which was com-
pared against a finite difference method using the BAND
program[7]. In general the Adomian method gave faster
convergence than that of the finite difference method, for
the model over a wide range of parameters. The solutions
obtained with 3, 4, 5 and 6 terms of Adomian polynomials
have been compared and solution with four-term approxi-
mates of the Adomian polynomial achieved three-decimal
point convergence for all data.

Fig. 2 shows the typical variation in local current density
with distance in the electrode for different values of dimen-
sionless potential. Increasing the potential has the expected
effect of increasing the local current density and thereby in-
creasing the overall variation in current density throughout
the electrode. The termν represents the relative influence of
electrode kinetics to ionic conductance. An increase in the
termν (equivalent to higher surface area or thicker electrode)
has the effect of decreasing the variation in dimensionless
current density. In absolute terms an increase inν will in-
crease the current density (bothν and I contain the term
“ai0L”). An increase in conductivity, which decreases the
value ofν, will increase the dimensionless current density
through a more uniform potential distribution and a greater
utilisation of the available electrode area. In general the rel-
ative effect of an increase inν is more significant for the
case of a lower value ofγ, i.e. lower ratio of limiting cur-
rent density to exchange current density, as this limits the
current density that can be achieved due to mass transport
constraints.

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

I lo
c

Fig. 2. Dimensionless currentIloc distributions with dimensionless distance
X: α = 0.5, γ = 50, s = 0.1; φ1 = 0.5, 1.0, 2.0, 4.0, 16.0 (from down to
up). Solid line:ν2 = 1.0; dashed line:ν2 = 0.1.
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Fig. 3. Distribution of local dimensionless current densitiesIloc with
dimensionless distanceX: α = 0.5, γ = 50, s = 1.0; φ1 = 0.5, 1.0, 2.0,
8.0 (from up to down). Solid line:ν2 = 1.0; dashed line:ν2 = 0.1.

The terms represents a ratio of the kinetic rate to the
diffusion rate in the electrode.Fig. 3 shows the effect of
increasing the value ofs, i.e. decreasing the diffusion rate
relative to the kinetic rate, on the current distribution. It

Fig. 4. The distributions of relative dimensionless potentialΦ and
dimensionless concentrationC with values of φ1 at membrane:
α = 0.5, ν2 = 1.0, γ = 50.0, s = 0.1. Dashed line—dimensionless con-
centrationC: φ1 = 0.5, 2.0, 4.0, 8.0, 16.0 (from up to down); solid
line—relative dimensionless potentialsΦ: φ1 = 0.5, 2.0, 4.0, 8.0, 16.0
(from up to down).

Fig. 5. The distributions of relative dimensionless potentialΦ and di-
mensionless concentrationC with values ofφ1 at membrane:α = 0.5,
ν2 = 1.0, γ = 50.0, s = 1.0; φ1 = 0.5, 2.0, 4.0, 8.0 (from up to down for
C, from up to down forΦ). Solid line: relative dimensionless potentials
Φ; dashed line: dimensionless concentrationC.

is evident inFig. 3 that local current densities have been
significantly reduced and that more of the electrochemical
activity of the electrode is focused closer to the membrane.
This is a consequence of the reduced concentration of reac-
tant away from the membrane due to for example a slower
diffusion rate (lower diffusion coefficient).

Fig. 6. The dependence of dimensionless total current densityI with
dimensionless potentialφ1 at membrane:α = 0.5 for all data. Dashed
line: ν2 = 0.1 for all data;γ = 50, s = 0.1; γ = 50, s = 1.0; γ = 10,
s = 0.1; γ = 10, s = 1.0 (from up to down). Solid line:ν2 = 1.0 for all
data;γ = 50, s = 0.1; γ = 50, s = 1.0; γ = 10, s = 0.1; γ = 10, s = 1.0
(from up to down). The data of third and fourth sets almost overlapped
for both sets above.
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Fig. 4shows the variation in dimensionless concentration
and overpotential in the electrode under conditions equiva-
lent to those ofFig. 3. As expected the concentration and
relative overpotential decrease further away from the mem-
brane due to the combined effect of diffusion mass transport

Fig. 7. (a) The dependence of effectiveness factorE and the dimensionless
potentialφ1 at membrane for a Tafel reaction influenced by mass transport
α = 0.5 for all data. Dashed line:ν2 = 0.1 for all data;γ = 50, s = 0.1;
γ = 10, s = 0.1; γ = 50, s = 1.0; γ = 10, s = 1.0 (from up to
down). Solid line: ν2 = 1.0 for all data; γ = 50, s = 0.1; γ = 10,
s = 0.1; γ = 50, s = 1.0; γ = 10, s = 1.0 (from up to down). (b) The
comparison of decomposition data with numerical data for the dependence
of effectiveness factorE and the dimensionless total currentI for a Tafel
reaction influenced by mass transport:αc = 0.5; γ = 10.0, s = 1.0;
γ = 10.0, s = 0.1; γ = 50.0, s = 0.1 (from left to right). Solid line:
ν2 = 1.0, (�) numerical result; dashed line:ν2 = 0.1, (�) numerical
result.

and the poor penetration of current into the electrode due to
ionic conductivity limitations.

Fig. 5shows the variation in dimensionless concentration
and overpotential in the electrode when the relative rate of
kinetics to diffusion has been increased, i.e. an increase in
the parameters (from 0.1 to 1.0). Clearly there is a greater
variation in concentration with an increase in the parameter,
s, at a given overpotential due to a relatively slower diffusion
rate.

Fig. 6 shows predictions of the overall electrode po-
larisation characteristics, i.e. dimensionless overpotential
versus current behaviour. As expected as the value of the
overpotential at the membrane increases the electrode takes
on limiting current density characteristics. As expected as
the value of the parameterγ decreases (local mass trans-
port coefficient is lower) the electrode approaches a lower
mass transport limiting current density state as overpotential
rises. The overall dimensionless limiting currents are also
higher at lower values of the parameterν. In addition as the
relative rate of internal diffusion decreases (s increases),
the values of the overall limiting current densities are
lower.

Fig. 7a and bshows the typical variation in effectiveness
factor with dimensionless potential and current density re-
spectively as a function of the mass transfer parameterγ. As
expected effectiveness falls as either overpotential or current
density increases. The effectiveness is greater as the param-
eterγ increases due to an increase in the relative value of
limiting current density. At a fixed value of dimensionless
potential, effectiveness is higher at lower values of the pa-
rameterν, due an improved current distribution, for exam-
ple, due to higher conductivity of electrolyte. Notably with
high values of limiting currents high values of effectiveness
are achieved at lower overpotentials or very low overall cur-
rent densities.

Also shown inFig. 7b are values of the cell polarisa-
tion, predicted by solution of the model using the BAND
finite difference method. There is generally good agree-
ment between the two solutions and confirms the suit-
ability of the Adomian method for the solution of this
type of nonlinear model. An advantage of the decompo-
sition method is that it leads to a faster convergence in
solution.

5. Conclusions

The solution of the nonlinear problem of the potential dis-
tribution in three-dimensional electrodes has been obtained
using the Adomian decomposition method. The model is
able to predict the influence of key kinetic and operational
parameters on current and potential distribution, effective-
ness and overall cell polarisation. The solution method gives
results which are comparable to those obtained with an ef-
ficient finite difference method, although with a faster con-
vergence than that method.
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