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Abstract

A model for a porous or particulate bed electrode reactor is presented. The model consists of nonlinear second-order ordinary differ-
ential equations, a one-dimensional Poisson equation, describing the effect of the electric field on this system, and a one-dimensional
diffusion-reaction equation describing the concentration variation associated with diffusion. The model accounts for mass transport and
heterogeneous electrochemical reaction. The solution of this model is by the approximate Adomian polynomial method and is used to
determine lateral distributions of concentration, overpotential and current density, overall cell polarisation and effectiveness factors, and
to simulate the effects of important system and operating parameters, i.e. local diffusion rates and mass transport coefficients.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction be limited by the prevailing conditions of mass transfer, i.e.
a limiting current can arise that can effect on the electrode
There have been several treatments and models ofperformance and particularly the potential distribution.
three-dimensional, porous or particulate bed reactors devel- The models of mass transfer reaction in porous electrodes,
oped over the yeaf4—8]. Three-dimensional electrodes are which describe the potential distribution or concentration
generally considered for reactions with low operating cur- distribution, are nonlinear differential equation(s), that are
rent densities in order to increase overall current per unit cell usually solved by linearisation and numerical methods. In
volume. Three-dimensional electrode structures are used inthis paper we describe a model of the porous electrode in
several applications, where high current densities are re-which internal mass transport limitations arise and are de-
quired at relatively low electrode and cell polarisation, e.g. scribed by a simple mass transport coefficient. This paper
water electrolysis and fuel cells. There have been severalis based on a previous nonlinear analysis of a packed bed
models of the current distribution in porous fuel cell elec- electrode model in which the bulk electrolyte reactant con-
trodes particularly polymer electrolyte fuel cells which have centration was assumed constant, i.e. low reactant concen-
employed phenomenological transport equati@s< 5]. tration[5]. In this paper we extend the model to the situation
In general applications of porous electrodes it is advanta- where there is a simultaneous variation in concentration as
geous that all of the available electrode area is fully utilised well as potential in the porous electrode.
when supporting high current densities at low polarisa- In trying to interpret the non-uniformity of reaction rate
tion. However conductivity limitations of three-dimensional and the utilisation of the electrode area a convenient and
electrodes generally cause current and overpotential to besimple concept of effectivenesk, can be used2]. This
non-uniform in the structure. In addition the reaction rate allows the predicted maximum current density to be cor-
distribution may also be non-uniform due to the influence of rected to give the actual rate. The model solution is obtained
diffusion and convective mass transf@j. The maximum  using the Adomian’s “inverse operator method” (IOM) or
current density at any position in the electrode structure will “decomposition method16]. This is an active field in
nonlinear science that is particularly useful in studying non-
"+ Corresponding author. Tek+44-191-222-8771; Iinear'problefms and can solve strong nonliqear differenFiaI
fax: +44-191-222-5292. equations without hypotheses such as linearity, perturbation,
E-mail address: k.scott@ncl.ac.uk (K. Scott). etc.[16-18] In an earlier pap€2] we described the use of
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Nomenclature

Greek letters

specific area of packed bed

electrode (m?)

finite term approximate of Adomian
polynomials

Adomian polynomials

concentration of oxidised species in
bulk (mol m~3)

surface concentration of oxidised specie
(molm~3)

concentration of reduced species in bulk
(mol m=3)

surface concentration of reduced species

(mol m—3)

reference concentration of oxidised
species in bulk (mol md)

reference concentration of reduced spec
in bulk (mol m3)

dimensionless concentratien crs/cr

components of finite term approximate of

dimensionles€

dimensionless surface concentration
diffusivity of species (m?s1)
Effectiveness (dimensionless)
Faraday constant (C o)

current density (Am?)

cathodic current density (Anf)
intrinsic current density (A m?)

limiting current density (A m?)

total current density (A m?)

exchange current density (AT)
dimensionless current densityit/aigL
local dimensionless current density
approximate of dimensionless current
density

bed length in the direction of current
flow (m)

inverse operator

number of electrons involved in
reaction

flux of species (molm2s1)

universal gas constant (J méIK 1)
dimensionless parameteraigL2/nFDcgr
temperature (K)

distance in the direction of current
flow (m)

dimensionless distance in the direction g
current flow= x/L

dimensionless parameter aa¢1
anodic charger transfer coefficient
(dimensionless)

4

ies

=)

oc catholic charger transfer coefficient
(dimensionless)

B nF/RT (V1)

y =1/ip adimensionless current density ratio

n overpotential= ¢ — ¢2 — ¢° (V)

O, approximate ofi terms for dimensionless
variable®

K effective conductivity of electrolyte phasge
(@ *tmY

"w dimensionless parameter —v?/¢,

2 dimensionless parameter aioLz,B//c

¢ dimensionless potentiat n

Om components of finite term approximate of
dimensionless potential

O components of approximate of
dimensionless potential

do dimensionless unknown constant

P1 dimensionless potential at membrane
(X=1)

@0 potential of open circuit (V)

Pt potential in conductive solid phase (V)

@? potential in solution phase (V)

(03 dimensionless potential variable ¢/¢1

P, components of finite term approximate of
dimensionles®

2, approximate of terms for dimensionless
variableC

an approximate Adomian method to solve the problem of a
packed bed reactor. In this paper the method described is an
improved Adomian decomposition which provides greater
accuracy in solution.

2. Porous electrode analysis

The three-dimensional or packed bed electrode has a
thicknessL, bounded on one side by a current feede(
0) and on the other side by a membrane or free solution
(x = L) as shown irFig. 1 Both electrolyte and electrode
phases are assumed to be continuous media with uniform
effective conductivities and in which the electrical poten-
tial obeys Ohm’s law. Mass transport of reactant, in the
porous electrode, is dominated by dispersion or diffusion,
with negligible convective flow of fluid. Locally within the
electrode there is a mass transport resistance between the
electrode surface and the solution. This situation may, for
example, arise when the surface of the electrode is cov-
ered by a thin layer of polymer electrolyte or in a fuel
cell electrode in which the electrocatalyst is covered by a
thin water layer. Thus within the porous structure there is
a mass transport limitation between the bulk concentration
in the pores and that at the surface of the catalyst particles
in the porous electrode matrix. That is the kinetics of the
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Fig. 1. Schematic diagram of porous electrode system.

electrochemical reaction are influenced by an internal masswhere

transport resistance.
Additional assumptions adopted in this analysis are:

=

. Isothermal and steady state conditions apply.
. lonic migration of the reacting species is neglected.

N

a.

a single mass transport coefficient.

The model of the electrode is developed as follgt]s
According to Ohm'’s law

i=—kVey @)

wherei is the vector of local current density.¢, is the
gradient of potential of electrolyte and is the effec-
tive conductivity of the electrolyte. The divergence of
is

V.i=—kV Vo = -V 2
and
> .| cRrs aahFn COs achFn
V.i=ag|—& ex - = —
: OLg p( RT ) el ( RT )}
(3

where V-i is the transfer current per unit volume of the
electrode and has the direction of an anodic current,;and
is the local overpotentiah = ¢t — ¢2 — ¢°.

. ; . d
¢t, the potential of electrode phase, is considered as a *

constant.¢?, the open-circuit value op! — $2 when the
concentrations of the reduced and oxidised species are th
initial ¢ andcQ, can be assumed to be zg#j.

Then the model for potential distribution in one dimension
can be written as

d? ai nF nF
an _ 9o C_Rsexp allmh ) _ COs Xp LR
dx? K cg RT COO RT

(4)

wherecr andcg are concentrations of reduced and oxidised

species (mol m3) and subscript ‘s’ refers to surface concen-

trations and subscript ‘O’ the bulk reference concentrations.
For an anodic current onlgq. (4) can be written with

dimensionless variables as

d¢

ek V2Csexplaad)

(5)

. The electrode is characterised by a uniform specific area,

nF X
¢—,3777 ﬁ_R_-I—v —Z’
aigL? c
,2 . do /3’ CS:_IES
K CR

Assuming that diffusion in the porous electrode can be de-

. The mass transfer conditions between the fluid phase and¢ribed by Fick’s law, we have
fixed phase are also assumed to be uniform as defined byN; = — D, V¢;

(6)

whereX; is the vector of local flux of reactamnt Ve; is the
gradient of concentration of reactarandD; is the diffusion
coefficient ofi.

For the mass transfer only in the form of diffusion, the
divergence ofV; should be

V.N;=—D;V-Ve¢; = —D;VZ;

(7)

and a material balance for the key component in a volume

element1,4]
5o )

(8)
whereR is the reaction term.
The concentration distribution in one dimension can be

COs

)= %

0
(6]

aig
nF

aghFn
RT

=R =

=
Xp (_ OlcFr;T Ui

written as
d? ai : nF
R _ 0 | CRs exp oalFn ©)
2 nFDRr c% RT
d2C —a.l() COs (xanr]
e—=——|—Fex 10
dx? nFDo |:c00 p( RT > (10)

For an anodic current, thEq. (9) can be written with di-
mensionless variables as

d?c
axz = SCs explaad) (11)
where
aigL?
c=®, o AL
‘R nFDRcR

Introducing the mass transfer parameter, for a Tafel-type
reaction, assuming migration is negligible, the local flux will
be

i
Nioc = kavg(CR — CRs) = = (12)

= i0 2% explarag)
nF cg a
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wherekayg is the average mass transfer coefficient in the

electrode.
Then we can obtain
C
CS = 0 (13)
(io/NFKavger) EXPlarag) + 1
Thus the current density becomes
ia < (14)

~ (ioexplaag)) + (/i)

where the limiting current density = NFkaygc2.
Substitutingeq. (13) or (14)into Egs. (5) and (11)the
model equation can be rewritten as

d’¢ 2 c

- ¥ 15
dx2 =" (1/expaad) + (1/y) (15)
2

d?c c (16)

—— =
dx (1/explaad)) + (1/y)

wherey = i)/ ip.
For convenience, le® = ¢/¢1, 1 = v?/¢1 anda =

aap1. Hence a set of ordinary different equations with
boundary conditions, which describes the potential and

concentration distributions, can be obtained as

d?® C

bl 17

dx2 = " (/expa®) + /) an

d2c C

ac _ 18

dx2 ~ Y (expad)) + (1/7) (18)
do dc

X=0  —=0 —=0 (19)

X=1, d=1, c=1 or

do dc

The dimensionless total current density- it/aigL, where
iT is the total current density based on the cross-sectional

area of the electrode.

The measurable or total current density, based on the

cross-sectional area of the electrode is given by

iT=k (ﬁ) (21)
dx x=L
or
dx x=L
and
ioL ) 1)
it = aigl] = 20% <d_> _ fix <d_> (23)
wo\dXJy_y LB \dX )y
or
i FDc}
iT = aipLl = Aok <d—C) = il (d_C) (24)
N dX X=1 L dX X=1

where the dimensionless total current dendity; it/aigL.

To assist in the solution of these difference equations
we can obtain a relationship betweénand C combining
Egs. (17) and (18)o give

d’e d’c

Bl e (25)

dx2 s dx2

which on integration results in

o—1="c-1 (26)
N

Hence the potential and concentration drops across the elec-
trode structure are related by the four parameterg, u
ands.

CombiningEgs. (17), (18) and (2@)ives two independent
different equations:

o [+ 6/m@-1)] 27
dx2 =~ " (1/expa®) + 1/
do
X=0, ax = 0
X=1 ®=1 or d—¢ =nul
- - ax ~
and
d’c c
el 28
a2 = Wexpell + /(€ - DD+ A7y 2D
dc
X =0, ax = 0
X=1 C=1 or d—C:sl
dx
The effectiveness factdg is given by
b I _ (do/dX)x—s (29)
explaap) W explo)
or
b I _ (dC/dX)x—1 (30)
explaad) W exple)

3. Solution by Adomian’s decomposition method

Wazwaz recently reviewed the Adomian decomposition
method[19]. For a differential equation, Adomian’s decom-
position method suggests that the solutigr) be decom-
posed by an infinite series of components

u(x) = Z”n(x) (31)
n=0

and the nonlinear functioffx, u(x)) by an infinite series of
polynomials

Sl u@) =" A, (32)

n=0
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whereA,, are the so-called Adomain polynomials that can
be generated for all types of nonlinearity according to algo-
rithms set by Adomiarl6].

In an operator formigs. (27) and (28¢an be written as
L® = ufi(s, X, P(X)) (33)
LC = sha(u, X, C(X)) (34)

where L = d?/dX?, and the inverse operator L is a
two-fold integral operator given by

L1 =/1</1(.)dx> dx (35)
0 0

Applying L~ to both sides oEq. (10)yields

®(X) = uLHAX, D(X)) (36)

CX) = sLH(f(X, C(X)) (37)

The decomposition series fa¥(X) and C(X) can be given
as

D @n(X) =pL? (ZAH) (38)
n=0 n=0

> Cu(x)=sL7t (ZAH> (39)
n=0 n=0

where the Adomian polynomial8,, are not the same in
Egs. (38) and (39)

For example, the first few Adomian polynomials,
for the equation of potential distribution are defin@e-5]
by

1+ (s/n)(Po—1)
(1/explad)) + (1/y)
A1 = fD(Po) @y

Az = fD @)@y + 1 @ (dg) P2

Ap = f(®Po) =

1
As = D (@0)P3 + [P (20) 102 + 7 [ (90) 0

A

(40)
The derivatives of thath degree for the nonlinear term can

be calculated as follows:

1
(1/expla®o)) + (1/y)

letu=1+>(@—1) and v=
m

87
The first derivative ol will be
u® =2 (41)
uw
The nth degree derivative of will be
 (Bg) = n![—a expla®o)"] (42)

[exp(—a®o) + (1/p)]"+1

Hence the derivative of thath degree for the nonlinear term
will be

FO(@g) = w® + 2y
"
FD(dg) = @ + 22 ,®
N
3 (dg) = w® 432,
nw
(43)

FD (Do) = @ + 42,3
o

£ (@) = ™ + n =D
"

According toEq. (38) the components of solution can be
written as

o
B(X) =) By(X) (44)
n=0
in which
@ = unknown constant
X
@1 =pul1(Ap) = /Lf(d’o)?
L2
@y =pl 1Ay = M[f/(%)d’l]si
x 4 2
@3 =L "HA2) = ulf (@) P2 + 3 (@0 Pl
1 X?
4= plHAz) = p [f’@o)@a + f(P0) @192 + 5}‘"”@0)4’?} 7
! x8
,
(45)

For easier calculation, we suggest rearranging the solution
into an even power series form

00 X2
P(X)=p (bO + bn_> (46)
; (2n)!
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where the constant coefficients will be

bo=—
nw

b1 = f(®o)
by = fO(Po)b1
bz = fD(®o)bz + 31D (P)b?
by = O (Po)b3 + 15f (Do)b1b2 + 1513 (D)b3

(47)
The derivative of the solution can be obtained directly
ch(X) >, x-1
— “Z

"(2n -1
The solution and its derivative are in series form, in which
the constantpo, the value of the potential ax = 0, is
undetermined, as yet.
The n-term approximates are

(48)

O, = Zcbm (49)
m=0

de, " /do,,

dx n;)( dx ) (50)

or

2, = Zcm (51)
m=0

de, ", /dC,,

X = E)(d—x) (52)

and serve as the approximate solution and its derivatives,
and should satisfy the boundary conditions.
To determine the unknown constadiy, we impose the
boundary conditiom®d = 1orC =1atX =1, or dp/dX =
wl or dC/dX = sl at X = 1 on the approximants. This
will lead to an algebraic equation for each approximation
with different terms. Having determined the constastthe
solution in a series form follows immediately.
Consequently, the local and total dimensionless currents
I andl, respectively, and the effectiveness factrcan be
calculated according tBgs. (20), (29) and (30)

1(de,\ 1 /de,
Il’"=;<dx>_§<dx> (53)
1 /de, _1/de,
=i (), (), .
I, (MO, /dX)x=1 _ (d$2,/dX) x=1
exp(aa¢1) 1 explaap) s explaagr)
(55)
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4, Discussion

The following describes the results of the model and the
influence of the dimensionless parameters on potential and
current distribution and effectiveness factors. All data were
calculated by the decomposition method which was com-
pared against a finite difference method using the BAND
program[7]. In general the Adomian method gave faster
convergence than that of the finite difference method, for
the model over a wide range of parameters. The solutions
obtained with 3, 4, 5 and 6 terms of Adomian polynomials
have been compared and solution with four-term approxi-
mates of the Adomian polynomial achieved three-decimal
point convergence for all data.

Fig. 2 shows the typical variation in local current density
with distance in the electrode for different values of dimen-
sionless potential. Increasing the potential has the expected
effect of increasing the local current density and thereby in-
creasing the overall variation in current density throughout
the electrode. The termrepresents the relative influence of
electrode kinetics to ionic conductance. An increase in the
termv (equivalent to higher surface area or thicker electrode)
has the effect of decreasing the variation in dimensionless
current density. In absolute terms an increase iaill in-
crease the current density (bothand| contain the term

L"). An increase in conductivity, which decreases the
value ofv, will increase the dimensionless current density
through a more uniform potential distribution and a greater
utilisation of the available electrode area. In general the rel-
ative effect of an increase in is more significant for the
case of a lower value of, i.e. lower ratio of limiting cur-
rent density to exchange current density, as this limits the
current density that can be achieved due to mass transport
constraints.

25

20

15

Loe

10

0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
X

1

Fig. 2. Dimensionless currehgc distributions with dimensionless distance
X:a=0.5,y=50s5=0.1; ¢ =05, 1.0, 2.0, 4.0, 16.0 (from down to
up). Solid line:v? = 1.0; dashed liney? = 0.1.



Y.-P. Sun, K. Scott/ Chemical Engineering Journal 102 (2004) 83-91

Iloc

0 01 02 03 04 05 06 07 08 09 1
X

Fig. 3. Distribution of local dimensionless current densitlgg with
dimensionless distanc& « = 0.5,y = 50,5 = 1.0; ¢1 = 0.5, 1.0, 2.0,
8.0 (from up to down). Solid linev? = 1.0; dashed linev? = 0.1.

The terms represents a ratio of the kinetic rate to the
diffusion rate in the electrodd=ig. 3 shows the effect of
increasing the value o, i.e. decreasing the diffusion rate
relative to the kinetic rate, on the current distribution. It

C&D

0 01 02 03 04 05 06 07 08 09 1
X

Fig. 4. The distributions of relative dimensionless potentdal and
dimensionless concentratiol© with values of ¢; at membrane:
o = 05,12 = 1.0,y = 500, s = 0.1. Dashed line—dimensionless con-
centrationC: ¢1 = 0.5, 2.0, 4.0, 8.0, 16.0 (from up to down); solid
line—relative dimensionless potentiads. ¢ = 0.5, 2.0, 4.0, 8.0, 16.0
(from up to down).
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Fig. 5. The distributions of relative dimensionless potendaland di-
mensionless concentratid® with values of¢$; at membranewo = 0.5,

2 =10,y =500, s = 10; ¢1 = 0.5, 2.0, 4.0, 8.0 (from up to down for
C, from up to down for®). Solid line: relative dimensionless potentials
@; dashed line: dimensionless concentratdn

is evident inFig. 3 that local current densities have been
significantly reduced and that more of the electrochemical
activity of the electrode is focused closer to the membrane.
This is a consequence of the reduced concentration of reac-
tant away from the membrane due to for example a slower
diffusion rate (lower diffusion coefficient).

25

15

Fig. 6. The dependence of dimensionless total current dehsityth
dimensionless potentigh; at membranew = 0.5 for all data. Dashed
line: v2 = 0.1 for all data;y = 50, s = 0.1; y = 50, s = 1.0; y = 10,
s=0.1; y =10, s = 1.0 (from up to down). Solid liney? = 1.0 for all
data;y =50,5s =0.1; Yy = 50,5 = 1.0; Yy = 10,5 = 0.1; Y= 10,5 =1.0
(from up to down). The data of third and fourth sets almost overlapped
for both sets above.
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Fig. 4shows the variation in dimensionless concentration and the poor penetration of current into the electrode due to
and overpotential in the electrode under conditions equiva- ionic conductivity limitations.
lent to those ofFig. 3. As expected the concentration and Fig. 5shows the variation in dimensionless concentration
relative overpotential decrease further away from the mem- and overpotential in the electrode when the relative rate of
brane due to the combined effect of diffusion mass transportkinetics to diffusion has been increased, i.e. an increase in
the parametes (from 0.1 to 1.0). Clearly there is a greater
variation in concentration with an increase in the parameter,
s, at a given overpotential due to a relatively slower diffusion
rate.

Fig. 6 shows predictions of the overall electrode po-
larisation characteristics, i.e. dimensionless overpotential
versus current behaviour. As expected as the value of the
overpotential at the membrane increases the electrode takes
on limiting current density characteristics. As expected as
the value of the parameter decreases (local mass trans-
port coefficient is lower) the electrode approaches a lower
mass transport limiting current density state as overpotential
rises. The overall dimensionless limiting currents are also
higher at lower values of the parameteidn addition as the
relative rate of internal diffusion decreasesiifcreases),
the values of the overall limiting current densities are
lower.

Fig. 7a and tshows the typical variation in effectiveness
. factor with dimensionless potential and current density re-
20 spectively as a function of the mass transfer parametas

expected effectiveness falls as either overpotential or current
density increases. The effectiveness is greater as the param-
1 : : : : etery increases due to an increase in the relative value of
. limiting current density. At a fixed value of dimensionless
091 | potential, effectiveness is higher at lower values of the pa-
08 % ] rameterv, due an improved current distribution, for exam-
L ple, due to higher conductivity of electrolyte. Notably with
0.7 1 high values of limiting currents high values of effectiveness
0.6 T% y N are achieved at lower overpotentials or very low overall cur-
\ \ N rent densities.
: . 1 Also shown inFig. 7b are values of the cell polarisa-
\ N tion, predicted by solution of the model using the BAND
finite difference method. There is generally good agree-
| N 1 ment between the two solutions and confirms the suit-
ability of the Adomian method for the solution of this
type of nonlinear model. An advantage of the decompo-
0.1t ? . | sition method is that it leads to a faster convergence in
| c. solution.
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5. Conclusions

Fig. 7. (a) The dependence of effectiveness faEtand the dimensionless
potential, at membrane for a Tafel reaction influenced by mass transport  The solution of the nonlinear problem of the potential dis-

— ina2 — = —01 e . . -
o = 0.5 for all data. Dashed line* = 0.1 for all data;y = 50,5 = 0.1; tribution in three-dimensional electrodes has been obtained
y =10,s = 0.1; y = 50, s = 1.0; y = 10, s = 1.0 (from up to . he Ad . d .. hod. Th del i
down). Solid line:v? = 1.0 for all data;y = 50, s = 0.1, y = 10, using the _Omlan_ ecomposition met _O : € mo _e IS
s=01;y=50,5=10; y = 10, s = 1.0 (from up to down). (b) The able to predict the influence of key kinetic and operational
comparison of decomposition data with numerical data for the dependence parameters on current and potential distribution, effective-

of effgctiv_eness factoE and the dimensionless total currdnfior a Tafel ness and overall cell polarisation. The solution method gives
reaction influenced by mass transpast = 0.5, y = 100, s = 1.0; results which are comparable to those obtained with an ef-
y = 100, s = 0.1; y = 50.0, s = 0.1 (from left to right). Solid line: .. .. . .

2 = 1.0, (@) numerical result: dashed line2 = 0.1, (O) numerical ficient finite difference method, although with a faster con-

result. vergence than that method.
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